Шифф йодная кислота

Шифф йодная кислота

Реакция Фельгена с реактивом Шиффа на ДНК

Реакция Фельгена указывает на присутствие ДНК, поэтому она прежде всего может быть использована для констатации наличия или отсутствия ядер в клетках, их размеров, формы, местоположения и т. д. Кроме того, интенсивность окрашивания может дать косвенные указания на количественные изменения ДНК.

Реактив Шиффа — фуксинсернистая кислота — является характерным реактивом на альдегиды. На свойстве реактива Шиффа взаимодействовать с альдегидными группами основана и реакция Фельгена с этим реактивом на ДНК. Однако, ввиду того что в молекуле ДНК альдегидные группы связаны, их надо предварительно освободить. Это достигается проведением гидролиза ДНК слабой кислотой, в результате которого происходит отщеплейие пуриновых оснований (аденина, гуанина) от молекулы ДНК и образуется остаток молекулы ДНК со свободными альдегидными группами:

Изменения возникают у первого углеродного атома дезоксирибозы; в месте отрыва пуриновых оснований выявляется потенциальная альдегидная группа. При. этом фуранозная форма дезоксирибозы превращается в форму нециклического сахара. В процессе реакции к двум альдегидным группам дезоксирибозы присоединяется одна молекула фуксинсернистой кислоты.

Фуксинсернистая кислота (лейкофуксин) получается из кислого раствора основного фуксина (парафуксина) в 1 н. соляной кислоте при насыщении его сернистым ангидридом. Сернистый ангидрид образуется при взаимодействии соляной кислоты с бисульфитом натрия, которые вносятся в кислый раствор основного фуксина:

При пропускании сернистого газа в раствор фуксина нарушаются две двойные связи, в одном из трех ароматических колец фуксина исчезает хиноидная группировка, а вместе с ней и лилово-красная окраска, свойственная фуксину. Фуксинсернистая кислота — непрочное бесцветное соединение.

Получение фуксинсернистой кислоты из основного фуксина протекает следующим образом: фуксин, взаимодействуя с соляной кислотой, образует комплексное соединение, которое далее реагирует с сернистой кислотой по следующей схеме:

Таким образом, при образовании фуксинсернистой кислоты к фуксину присоединяются две группы (-SO2H).

При реакции с альдегидами хиноидная группировка восстанавливается, так как фуксинсернистая кислота — неустойчивое соединение, разлагается с образованием сернистой кислоты.

При взаимодействии одной молекулы фуксинсернистой кислоты с двумя молекулами остатков ДНК, имеющих обнаженные альдегидные группы, получается одна молекула окрашенного соединения.

При подготовке материала для проведения реакции Фельгена обычно рекомендуют фиксацию в спиртовых и кислых фиксаторах. Чаще всего применяют фиксатор Карнуа (стр. 45). Такой фиксатор осаждает нуклеопротеиды, что приводит к удачным морфологическим картинам. Однако длительное пребывание материала в фиксаторе вызывает разрушение связи между нуклеиновыми кислотами и белками, приводит к постепенной экстракции нуклеиновых кислот и дает искаженную картину. Поэтому пребывание в фиксаторе надо максимально ограничивать.

1) Реактив Шиффа (фуксинсернистая кислота).

Приготовление реактива Шиффа. 1 г основного фуксина растереть в ступке и растворить в 200 мл кипящей дистиллированной воды; охладить до 50°С. В охлажденный раствор добавить 20 мл 1 н. соляной кислоты * и охладить до 25°С. Добавить 1 г бисульфита или метабисульфита натрия. Полученную смесь взболтать с активированным углем (от 1 да 3 мин) и профильтровать. Налить в темный или завернутый в темную бумагу сосуд, закрыть его притертой пробкой и поместить в темноту на 12 или более часов до обесцвечивания основного фуксина и образования фуксинсернистой кислоты.

* ( 1 н. соляная кислота соответствует 10%-ному раствору, приготовленному из концентрированной соляной кислоты (уд. в. 1,19))

2) Сернистая вода.

Приготовление сернистой воды. К 200 мл дистиллированной воды добавить 20 мл 1 н. соляной кислоты и 1 г бисульфита натрия.

3) 1 н. соляная кислота.

4) Среды для обезвоживания объектов и заключения их в канадский бальзам (стр. 66-70).

5) Канадский бальзам.

Проведение реакции

* ( См. сноску на стр. 118.)

1. Погрузить препараты в 1 н. соляную кислоту на несколько секунд.

2. Перенести их в заранее нагретую до 60° С 1 н. HCl и поместить в термостат при температуре 60° С (или на водяную баню с такой же температурой) на 5-10 мин * .

* ( Длительность гидролиза зависит от примененного фиксатора. При употреблении фиксатора Карнуа и формалина оптимальное время 8 мин.)

3. Сполоснуть препараты холодной 1 н. HCl.

4. Поместить их в реактив Шиффа на 1 ч.

5. Отмыть избыток реактива Шиффа сернистой водой (3 смены по 3-5 мин).

6. Промывать препараты в водопроводной воде в течение 5-10 мин, сменяя начинающую розоветь воду.

7. Довести препараты до бальзама через 96%-ный, 100%-ный спирт, смесь спирта с ксилолом и ксилол.

8. Наблюдать появление малиновой окраски.

Результаты реакции (табл. 20)


Таблица 20. Реакция Фельгена. Кончик корешка лука. А — общий вид кончика корешка лука в разрезе; Б — детали строения кончика порошка лука; 1 — корневой чехлик; 2 — зона деления; 3 — зона растяжения (увеличение 7 X 8 и 7 X 40)

В кончике корешка лука ядра приобретают малиново-фиолетовую окраску. Ядра зоны растяжения и особенно всасывания выглядят несколько менее яркими, чем ядра зоны деления. Ядрышки, цитоплазма и оболочки клеток остаются неокрашенными.

В зерновке кукурузы ядра корешка, почечки и всех остальных тканей зародыша, а также клеток алейронового слоя окрашиваются в характерный для реакции Фельгена цвет. Сплюснутые и растянутые ядра клеток эндосперма окрашиваются более бледно.

Станьте одним из тех удачников, которые получат добротное прислуживание от самых изящных индивидуалок. Всегда соблазнительные шлюхи с вашего двора ежедневно удовлетворяют молодых людей разными способами .

Читайте также:  Пробиотики хилак форте

ГИСТОХИМИЯ УГЛЕВОДОВ

Биологическая роль углеводов многообразна.

В организме они выполняют опорные и энергетические функции, некоторые углеводы являются составными частями биологически важных соединений (АТФ, циклической АМФ, нуклеиновых кислот, гепарина, витамина С и др.). Гликопротеиды как специфический компонент иммуноглобулинов играют важную роль в иммунных механизмах, определяя антигенную активность сывороточных и клеточных факторов. Кроме того, продукты расщепления углеводов используются для синтеза практически всех классов соединений в живой клетке.

Классификация углеводов

В живой клетке углеводы существуют в форме моно-, олиго- и полисахаридов. В гистологических препаратах они сохраняются практически только в виде полисахаридов: во всяком случае только полисахариды могут быть с достоверностью выявлены гистохимически. Правда, возможно также гистохимическое выявление глюкозы и витамина С.

Общепринятой классификации полисахаридов не существует.

Для практических гистохимических целей достаточно разделить полисахариды на гомо- и гетерополисахариды.

Гомополисахариды построены из остатков молекул моносахаридов, главным образом пентозы и гексозы, соединенных между собой кислотными мостиками. Гомополисахаридами являются крахмал, инулин, клетчатка, гликоген. К ним с определенными оговорками можно также отнести хитин и полигалактуроновую кислоту.

Гетерополисахариды разделяют на гликозаминогликаны (ГАГ) и гликопротеины. К кислым гликозаминогликанам ГАГ относят гиалуроновую кислоту, молекула которой построена из остатков глюкуроновой и уксусной кислот и гексозамина; хондроинин-4-сульфат, хондроитин-6-сульфат, дерматан-сульфат, кератан-сульфат, гепаритин-сульфат, гепарин, молекулы которых содержат остатки гексозамина, глюкуроновой или уроновой кислот, серной и уксусной кислот в различных сочетаниях. В тканях кислые ГАГ, кроме гепарина, находятся в соединении с белками. Такие комплексы, в которых к белковому стержню присоединены полисахаридные цепи, носят название «протеогликаны». Все эти соединения входят в состав матрикса соединительной ткани, крови, синовиальной жидкости, слизи.

Гликопротеины являются белками, к молекуле которых ковалентно присоединены олигосахариды: гексозы, гексозамины, сиаловые кислоты, фукозы и др. Такие соединения являются составной частью клеточных мембран, слизистых секретов желез, сывороточных белков, ферментов, гормонов, «неколлагеновых белков» соединительной ткани и т.д.

Гистохимическая идентификация углеводов

Выявление углеводов основано, как правило, на методах общего анализа химических групп. Используются методы окисления, метахроматическое окрашивание основными красителями, реакции связывания коллоидных металлов, выявление базофилии, окрашивание кармином, реакции блокирования и превращения реакционноспособных групп, методы ферментативного гидролиза, радиоавтографию, иммуногистохимию.

Методы окисления 1,2-гликолей до альдегидов

Реакция Шифф-йодной кислотой (ШИК-реакция)

Метайодная кислота селективно окисляет и расщепляет -С=С-связи не только в 1,2-окси-, но также в 1-окси-2-амино-1-окси-2-алкиламино- и 1-окси-2-кетогруппах.

В результате этого образуется одна кетогруппа или две альдегидные группы, как, например, в глюкозе. Альдегидные группы реагируют с реактивом Шиффа (фуксин-сернистой кислотой) точно так же, как и в реакции Фельгена. С помощью этого метода выявляют все соединения, содержащие оксигруппы, которые в результате окисления метайодной кислоты могут превращаться в альдегидные группы. Однако в гистологических срезах практически лишь гликоген и гликопротеины, сохраняющиеся в достаточных количествах, могут быть выявлены с помощью ШИК-реакции. Гликоген можно дифференцировать от гликопротеинов путем переваривания в амилазе или диастазе.

Для окисления -С-С-связей в полисахаридах предпринимались попытки использовать, помимо одной кислоты, другие окислители-хромовую кислоту, перманганат калия, тетраацетат натрия и т.д. Наиболее удачной является модификация ШИК-реакции, предложенная А.Л. Шабадашем (1949).

1. Материал фиксируют в 10 % формалине, жидкостях Карнуа, Ценкера, заливают в парафин.

2. Депарафинированные срезы доводят до дистиллирован­ной воды.

3. При комнатной температуре срезы окисляют 0,5—1 % водным раствором орто- или метайодной кислоты в течение 2 —10 мин.

Окисление можно также проводить по Шабадашу в 0,001—0,01 М метаперйодате калия или натрия в течение 7 — 25 мин.

Раствор хранят в темноте.

Рабочую концентрацию этого раствора и продолжительность инкубации в ней подбирают в зависимости от объекта.

4. Промывают в дистиллированной воде 10 мин.

5. Помещают срезы в реактив Шиффа на 10-30 мин при комнатной температуре в темноте.

Реактив Шиффа по Грауманну:

0,5 г парарозанилина (парафуксин, свободный от акридина, стандартный) полностью растворяют в 15 мл 1 н. соляной кислоты без нагревания при помешивании и доводят до 85 мл дистиллированной водой с растворенными в ней 0,5 г пиросульфита калия; прозрачный интенсивно-красный раствор, помещенный в темноту в сосуде с плотно прилегающей пробкой, в течение 24 ч приобретает желтоватый оттенок, его встряхивают 2 мин с 0,3 г активированного угля (порошок) и затем дважды фильтруют.

Такой раствор готов к использованию и его можно хранить в сосудах коричневого цвета с пришлифованной пробкой по крайней мере в течение 2 мес.

6. Срезы промывают сернистой водой (600 мл дистиллированной воды + 30 мл 10 % пиросульфита калия + 30 мл 1 н. со­ляной кислоты) три раза по 2 мин.

Сернистую воду можно так­же готовить (непосредственно до проведения реакции) по рекомендации А.Л. Шабадаша следующим образом:

к 200 мл дистиллированной воды добавить 10 мл 10 % раствора натрия гидросульфита

и 10 мл 1 н. соляной кислоты.

7. Тщательно промывают в проточной и дистиллированной воде, ядра можно докрасить 0,5 % светлым зеленым или кислым гемалауном.

8. Обезвоживают в спиртах возрастающей концентрации, заключают в бальзам.

Читайте также:  Сведение разведение рук в тренажере

углеводы, содержащие гексозу, окрашиваются в красно-лиловый цвет, гликоген — в более интенсивный темно-красный.

расщепление гликогена амилазой или диастазой, реакция ацетилирования для блокирования гидроксильных групп.

необходимо пользоваться химически чистой посудой, стеклянными палочками; нельзя работать с металлическими крючками или иголками; окрашивание срезов в реактиве Шиффа следует проводить в темноте.

Метахроматическое окрашивание кислых гликозаминогликанов

Метахромазия — это изменение спектров поглощения используемых красителей.

Метахромазию можно получить при использовании очень широкого набора красителей (табл. 2).

Спектры поглощения красителей, дающих метахромазию [Kel­ly, 1956]

Гликоген локализуется в цитоплазме клеток и играет важную роль в энергетическом метаболизме клеток. При цитохимическом исследовании гликогена используют главным образом PAS-реакцию или ШИК-реакцию (по названию реактивов — шифф-йодная кислота).

Метод Шабадаша

Под влиянием перйодата калия гликоген окисляется с образованием альдегидных соединений, легко реагирующих с реактивом Шиффа (фуксин-сернистая кислота). В местах локализации гликогена выявляется вишнево-фиолетовое окрашивание, по интенсивности которого можно судить о количестве гликогена в клетках.

Посуда и оборудование

  • Химические стаканы емкостью 50 мл или кюветы.
  • Мерные цилиндры.
  • Градуированные пипетки.
  • Колбы емкостью 250 мл.
  • Воронки.
  • Горелки.
  • Термостат.
  • Весы.

Реактивы

  • 0,03 М раствор перйодата калия или натрия: 230 мг перйодата растворяют в 100 мл дистиллированной воды. Готовят перед употреблением.
  • Реактив Шиффа: 1 г основного фуксина растворяют в 200 мл кипящей дистиллированной воды. По мере охлаждения в раствор добавляют 1 г метабисульфита калия и 20 мл 1 н. раствора соляной кислоты. Оставляют на сутки. Для полного обесцвечивания добавляют растолченную таблетку карболена, оставляют на сутки, затем фильтруют. Реактив сохраняют в темноте (лучше на холоде) в плотно закрытой посуде. Годен к употреблению в течение нескольких месяцев (легкая степень покраснения свидетельствует о непригодности реактива).
  • Сернистая вода: к 10 мл 10 % раствора метабисульфита калия добавляют 200 мл дистиллированной воды и 10 мл 1 н. раствора соляной кислоты. Готовят перед употреблением.
  • Реактив Шабадаша: к 100 мл этилового спирта добавляют 1,8 г нитрата меди, 0,9 г нитрата кальция и 10 мл формалина.
  • 1 н. раствор соляной кислоты (82,5 мл концентрированной соляной кислоты удельного веса 1,19 доливают дистиллированной водой до 1 л).
  • 0,1 % спиртовой раствор светло-зеленой краски (лихтгрюн).

Ход окраски

  • Препараты фиксируют (тотчас после приготовления) в жидкости Шабадаша в течение 30 мин.
  • Промывают в двух сменах дистиллированной воды.
  • Погружают в раствор перйодата на 20 мин (в темноте).
  • Промывают в трех сменах дистиллированной воды.
  • Ополаскивают в сернистой воде (в течение 1 — 2 мин).
  • Окрашивают реактивом Шиффа в течение 30 — 40 мин (в темноте).
  • Промывают в трех сменах сернистой воды по 3 мин.
  • Промывают в трех сменах дистиллированной воды по 3 мин.
  • Окрашивают светло-зеленой краской в течение 10-20 с.
  • Промывают в дистиллированной воде.

Для проведения реакции удобно все растворы поместить в химические стаканчики или кюветы и переносить препараты в указанной выше последовательности.

В настоящее время существуют реагенты для цитохимического исследования на гликоген заводского производства, которые более просты в применении. К сожалению, не все из них обладают хорошим качеством.

Результат метода Шабадаша

Гликоген окрашивается в вишнево-фиолетовый цвет на зеленом фоне препарата.

Расчет количества гликогена производят по полуколичественному методу или выражают в процентах.

Кроме гликогена, положительную реакцию могут давать такие ШИК-положительные вещества, как кислые и нейтральные мукополисахариды, мукопротеины, гликопротеины и др. Гликоген легко дифференцировать от других веществ пробой со слюной или диастазой.

Проба со слюной

Препарат помещают в свежесобранную слюну и оставляют на 30 мин в термостате. Затем производят окраску на гликоген приведенным выше методом. Инкубация препаратов со слюной способствует расщеплению гликогена, и при реакции с реактивом Шиффа не получается розовой окраски.

Идентифицировать гликоген можно также путем предварительной инкубации мазков с амилазой (1 мл профильтрованной амилазы растворить в 40 мл физиологического раствора) в течение 30 мин в термостате.

На практике проба со слюной обычно не проводится, поэтому под PAS-положительным материалом понимаются, как правило, все полисахариды, а не только гликоген.

Нормальные величины метода Шабадаша

В мазках периферической крови гликоген содержится в цитоплазме нейтрофилов (в виде обильной мелкой зернистости), цитоплазме лимфоцитов (в виде небольшого количества крупных зерен) и тромбоцитах (в виде одиночных крупных зерен). В пунктате костного мозга гликоген выявляется в нейтрофилах разной степени зрелости, лимфоцитах и мегакариоцитах.

Концентрация PAS-положительного материала в клетках гранулоцитопоэза нарастает по мере созревания клеток. Диффузное окрашивание цитоплазмы обычно свойственно наиболее молодым клеткам гранулоцитарного ряда (миелобласты, промиелоциты, миелоциты). В зрелых нейтрофилах содержится много PAS-положительного вещества в виде мелких гранул, упакованных так плотно, что цитоплазматический фон плохо различим. У здоровых людей количество интенсивно окрашенных нейтрофилов крови (+++) колеблется в пределах 2—12 %, средней интенсивности окраски (++) — в пределах 72—90%, слабо окрашенных (+) — от 4 до 18%. СЦК равен 1,71—2,04. Некоторые авторы приводят более высокие значения СЦК гликогена в нейтрофилах здоровых людей (2,485 — 2,555). У лиц пожилого и старческого возраста отмечено достоверное снижение СЦК гликогена (1,93 — 2,03).

Читайте также:  Боботик от коликов для новорожденных отзывы

В зрелых эозинофилах и базофилах PAS-положительный материал располагается следующим образом: специфические гранулы остаются неокрашенными и резко выделяются на фоне диффузного окрашивания цитоплазмы.

В моноцитах гликоген чаще выявляется в виде мелкой пылевидной зернистости на фоне светло-розового диффузного окрашивания.

В лимфоцитах крови здоровых людей гликоген содержится в виде небольшого числа гранул в 8,1 — 12,7% клеток. Некоторые авторы дают цифры от 2 до 30%.

В норме от 3 до 10% клеток эритроидного ряда содержат мукополисахариды.

В мегакариоцитах костного мозга гликоген обнаруживается в виде гранул (от единичных до 30—50), напоминая скопления кровяных пластинок. У здоровых людей число гликогенположительных мегакариоцитов составляет 58,45 — 65,55 %. В тромбоцитах PAS-положительный материал выявляется в виде мелких рассеянных гранул по периферии клетки либо в виде интенсивного центрально расположенного пятна.

Клиническое значение метода Шабадаша

Увеличение содержания гликогена в нейтрофилах наблюдается при различных воспалительных процессах, эритремии, сахарном диабете, уменьшение — при агранулоцитозах, лучевой болезни, хроническом миелолейкозе, особенно при прогрессировании процесса.

Повышение числа гликогенположительных лимфоцитов (до 70 — 80 %) характерно для лимфопролиферативных заболеваний, особенно хронического лимфолейкоза.

При хроническом миелолейкозе содержание гликогена в гранулоцитах уменьшается приблизительно в 2 раза по отношению к норме, хотя общее его количество, определяемое биохимическими методами, может быть даже повышенным вследствие лейкоцитоза.

При тромбоцитопенической пурпуре и симптоматических тромбоцитопениях число гликогенположительных форм мегакариоцитов значительно снижено, после спленэктомии оно повышается до нормальных величин.

При острых лейкозах гликоген можно обнаружить в бластных клетках: при остром миелобластном лейкозе в виде мелкой зернистости в цитоплазме или в виде слабого диффузного ее окрашивания, причем в части бластов PAS-реакция отрицательная. При остром промиелоцитарном лейкозе наблюдается яркое диффузное окрашивание цитоплазмы. В монобластах реакция может быть отрицательной, слабо положительной в диффузной или диффузно-гранулярной форме (когда продукт реакции выявляется в виде рассеянных мелких или средних гранул, располагающихся по краю цитоплазмы, на диффузном фоне). При эритромиелозе гликоген в виде гранул обнаруживается в эритробластах, в виде диффузного окрашивания разной интенсивности — в нормобластах. Лимфобласты содержат гликоген в цитоплазме в виде средних и крупных гранул, располагающихся венчиком вокруг ядра, иногда сливающихся в блоки, на неокрашенном фоне. Количество клеток с таким характером PAS-реакции сильно варьирует при различных случаях острого лимфобластного лейкоза.

Цитохимическое исследование на гликоген можно проводить не только в мазках крови и костного мозга. Так, например, можно исследовать мазки влагалищного эпителия и по результатам исследования судить о функциональном состоянии яичников. В норме у женщин обнаруживают много гликогена в клетках, в то время как обеднение их гликогеном свидетельствует о нарушении функции яичников.

В опухолях количество гликогена различно: зрелые доброкачественные опухоли содержат много гликогена, в незрелых раковых опухолях количество гликогена резко уменьшено. Снижение гликогена в опухолевых клетках, вероятно, может быть использовано как показатель злокачественности опухоли.

Микрофотографии ШИК-реакции:

Литература:

  • Справочник по клиническим лабораторным методам исследования под ред. Е. А. Кост. Москва «Медицина» 1975 г.
  • Справочник «Лабораторные методы исследования в клинике» под ред. проф. В. В. Меньшикова Москва «Медицина» 1987 г.
  • Л. В. Козловская, А. Ю. Николаев. Учебное пособие по клиническим лабораторным методам исследования. Москва, Медицина, 1985 г.
  • В.Г. Палагнюк — Цитохимическая диагностика острых лейкозов.
  • Исследование системы крови в клинической практике. Под ред. Г. И. Козинца и В. А. Макарова. — М.: Триада-Х, 1997 г.

Похожие статьи

Цитохимическое исследование миелопероксидазы

Миелопероксидаза является лизосомальным ферментом, катализирующим в присутствии перекиси водорода окисление различных субстратов. Она локализуется преимущественно в специфических азурофильных гранулах в цитоплазме гранулоцитов и является маркером клеток миелоидного ряда. Миелопероксидаза выявляется в клетках гранулоцитарного ряда, начиная с миелобласта.

Раздел: Цитохимия

Цитохимическое исследование липидов

Цитохимическое исследование липидов основано на применении красящих веществ, растворяющихся в жирах (судан III, судан IV, черный судан и др.). Для выявления нейтрального жира пользуются суданом III, окрашивающим жир в оранжевый цвет. Липоиды выявляются лучше суданом черным (черное окрашивание).

Раздел: Цитохимия

Кольцевая проба Геллера

Кольцевая проба Геллера относится к качественным реакциям определения белка в моче. Так как она основана на реакции коагуляции, то исследуемая моча должна соответствовать определенным требованиям: быть прозрачной и иметь кислую реакцию.

Раздел: Анализ мочи

Подсчет миелокариоцитов

Для подсчета миелокариоцитов пунктат костного мозга разводят в 200 раз. Для этого к 4 мл 3 -5% раствора уксусной кислоты добавляют 0,02 мл пунктата. Содержимое пробирки тщательно перемешивают и заполняют камеру Горяева. После оседания форменных элементов (через 1 — 2 мин) подсчитывают миелокариоциты в 100 больших квадратах (аналогично подсчету числа лейкоцитов в периферической крови).

Раздел: Гемоцитология

Морфология клеток мегакариоцитарного ростка

Мегакариобласты — родоначальные клетки мегакариоцитарного ряда. Размер — около 20 мкм. Ядро круглое, с мелкосетчатой структурой хроматина, иногда сплетенного в виде клубка. Структура ядра грубее, чем у недифференцированного бласта, нередко видны ядрышки. Цитоплазма базофильная, беззернистая, имеет вид узкого ободка. Часто контуры клеток неровные, с отростками цитоплазмы и образованием «голубых» пластинок.

Раздел: Гемоцитология

Ссылка на основную публикацию
Шизофреник кто это такой
Психиатр Jim van Os (Джим ван Ос) меняет устоявшиеся представления о шизофрении. Шизофрения – не болезнь. И уж точно не...
Шатаются зубы лечение
Давайте поговорим об основных симптомах стоматологических заболеваний. Наши специалисты ответили на самые распространенные вопросы пациентов. Что должно насторожить? Когда нельзя...
Шафран для чего используется
Пряная специя шафран издревле славится своими полезными свойствами. Она не только придает блюдам неповторимый аромат и вкус, но и тонизирует,...
Шизофренические синдромы
Что такое шизофрения? Шизофрения – это психическое расстройство, для которого характерно искажение мышления (бред) и восприятия окружающей действительности (галлюцинации). Шизофрения...
Adblock detector